
Microprocessing and Microprogramming 38 (1993) 669-678 669
North-Holland

Modeling and design of the multimedia subsystem of a distributed
authoring environment
A. Kameas ~ S. Papadimitr iou b and P. Pintelas c

aDepartment of Computer Engineering & Informatics, University of Patras,
26110 Patras, Greece

bDept, of Computer Engineering & Informatics, University of Patras,
26110 Patras, Greece

CDept. of Mathematics, Sector of Computat ional Mathematics & Informatics, University of Patras,
26110 Patras, Greece

In this paper, the model and architecture of the multimedia subsystem of a distributed authoring environment
called VAS (Virtual Authoring System) axe presented. VAS is an authoring environment that integrates various
tools and provides a common communication basis for the tools and the designers who use them. Its underlying
model is based on existing actor models, implementing all the society-modeling capabilities these models exhibit,
while the Client Facilitator Consultant model is used to model the systemwise tool behaviour. The Multimedia
Distributed Filing System (MDFS) of VAS meets many requirements users have from multimedia systems and
uses VAS model to provide system users with transparent access to multimedia objects. MDFS consists of many
co-operating servers, which implement VAS actor-based model. To take advantage of many well-established
standards, MDFS communications have been implemented upon the Berkeley Unix socket library. The distributed
nature of VAS offers a new perspective to the authoring process and the system's object-oriented model has led
to an open-ended architecture, which permits the integration of new tools and supports the system's evolution
to meet new emerging requirements.

1. I n t r o d u c t i o n

VAS is not an authoring system in the classical
sense. It may rather be described as a society of
tools cooperating towards courseware production
(VAS does not exist as a system - hence the term
"virtual" - but is composed of autonomous, com-
municating tools which may be distributed over
a network), leading to a concurrent execution of
the phases of courseware development; still this
process will appear integrated and continuous to
developers. To model systemwise tool behaviour,
we me a model based on an analogy of human col-
laborative efforts, namely the Cl ien t - F a c i l i t a t o r

- C o n s u l t a n t (C F C) model [1].
In this paper, we concentrate on the multi-

media subsystem of VAS, and especially on the
Multimedia Distributed Filing System (MDFS),
[10] which in fact consists of many cooperating
servers. .M1 tools communicating with this sub-
system are modeled as clients to the multimedia
servers, which are the consultants of the system.

There exist however certain servers which provide
recta-services these are the facilitators of MDFS
(figure 2). The general idea behind this scheme
is to take advantage of the aggregate storage and
computational capabilities of the distributed sys-
tem.

Multimedia objects are fundamentally differ-
ent from the classical text data and database
records, and impose heavy performance require-
ments on any underlying system. Among other-
s, these include the need to cope with the pe-
culiarities of each media type, the provision of
a flexible and efficient scheme in order to meet
very large storage space requirements, and the
support of synchronization structures in order to
meet real-t ime constraints that result t~om con-
tinuous media streams and associated operations
(like recording and retrieval of continuous media
streams, which may in fact be of different type).

While many multimedia filing systems have
been implemented [12, 5] a t tempting to meet

daisy
Rectangle

670 A. Kameas ot aL

these requirements, most of them are centralized,
non-extensible designs with restricted transparen-
cy, extensibility, availability, reliability or perfor-
mance. Many such systems comprise a set of tools
built around a centralized media objects storage
[4], with attention drawn to the types and at-
tributes of stored objects rather than to physical
access issues (which are delegated to the "under-
lying network"). In designing VAS we adopted
many solutions used in MUSE system [6] (like
usage of Unix environment, creation of multiple
server processes, modularity in design etc).

MDFS is extensible and capable of incremental
growth, so that new media servers, client applica-
tions and machines may be added ~ removed at
any time, permiting VAS not only to improve the
quantity of services offered (e.g. addition of new
tools), but also to evolve in quality (e.g. defini-
tion of new roles). The modular design Of MDFS
also permits the modification of the servers in or-
der to meet the particular requirements of the
media each supports, while the CFC model also
permits tools to dynamically change their roles
in VAS society (facilitators), contrasted with tra-
ditional dient-server models [3]. The real time
constraints imposed by continuous media are con-
f~onted by using buffering at the dient side and by
supporting a flexible communication scheme that
permits critical messages to gain priority Of trans-
mission. Finally, an online performance monitor
is provided, which can detect heavily-loaded n-
odes and provide a detailed view Of each node
workload.

To achieve efficient usage of expensive multime-
dia machines and to meet storage requirements,
VAS adopts a distributed storage scheme for me-
dia objects. This distributed architecture allows
for data replication and built-in redundancy in all
the critical resources that may fail. Thus the sys-
tem can overcome arbitrary single-point failures
and offers a high degree of availability. Commu-
nication between servers is based on the widely
available Berkeley UNIX socket library. The In-
ternet Domain socket type permits the servers to
communicate uniformly independently of whether
or not they reside on the same machine, achiev-
hag location independence. Using this library also
promotes portability: MDFS servers can run on

any UNIX machine, and with minor modification-
s on non-UNIX machines, provided these sup-
port socket-based interprocess communication.
In addition, VAS supports both synchronous and
asynchronous communication modes using special
tools that act as "facilitators".

Robustness is achieved by making servers state-
less, since the response of a stateless server does
not depend in any way on the history of previ-
ous requests. In ~der to make a server stateless,
we have avoided using descriptor based address-
hag and maintaining position and current direc-
tory information. Instead, to make the system
efficient, we used a combination of caching and
buffering techniques. Caching exploits the locali-
ty of program behaviour: each server caches the
descriptors of the most frequently used objects.
The cache replacement policy currently in use is
LRU (Least Recently Used), which exploits the
locality usually observed ha most program access
patterns (for example, a server that uses LRU re-
allocates the cache resources used by a client that
failed). Buffering takes advantage of the fact that
most requests handle information sequentially.

In the next section, the architecture and un-
derlying model of VAS are presented. We then
focus on MDFS and present its architectural de-
sign and most important characteristics. Subse-
quently we present some implementation issues
that arise from the distributed nature of the sys-
tem and the solutions we adopted. Finally we
conclude with the presentation of future research
directions. The reader should note that technical
solutions to design issues, where provided, are not
described extensively due to space limitations (to
be frank, we believe that each solution to a de-
sign issue would require a separate publication in
order to be properly described).

2. VAS model and architecture

VAS underlying model is heavily based on ex-
isting actor models (i.e. [2]). An actor system is
composed of actors that communicate with e~ch
other by exchanging messages. Everything in the
system, at any level of granularity, is represent-
ed as actors capable of receiving and responding
to messages. Messages are themselves actors, too.

daisy
Rectangle

Multimedia subsystem of a distributed authoring environment 671

To envisage VAS architecture, one must think of a
network of interconnected tools that interact con-
tinuously with each other and with the system en-
vironment using links [8, 9]. Both tools and links
are actors. To make, however, the modeling and
analysis of VAS easier, we have grouped the tools
it incorporates into five classes (subsystems) [9]:
the computational subsystem, the expert subsys-
tem, the multimedia subsystem, the reusability
subsystem, and the user interface subsystem.

A tool is an autonomous, integrated compu-
tational unit that produces a certain clement of
the course (e.g. a frame), or offers a service in
the authoring process. The internal tool struc-
ture is made up of a behavioural and a functional
part (figure 1.a). The behavioural part incorpo-
rates the functional constraints of the tool: what
kinds of input (commands and data) it responds
to, which are the other tools it may communicate
with, what happens to the inadequate messages
it receives, etc. The functional part is the pure
computational part: it is composed of the pro-
cedures and functions the tool uses to transform
tool input into output. Links are used to repre-
sent the tool's communication environment and
facilitate the transportat ion of messages. The
link notion descended from dataflow models; only
in our model, links are active entities represented
with actors. The set of links forms the interfac-
ing part of a tool. A link's behavioural part con-
tains the physical addresses of tools together with
type matching information, while in its function-
a/part , the message transportation and transfor-
mation functions are included. Messages being
themselves actors, have a behavioural part that
may be interpreted as a header and a functional
part that activates the appropriate handler.

3. MDFS society ¢f tools

In this section we present the tools of the mul-
timedia subsystem of VAS and describe the role
each has within VAS society.

3.1. The facilitators
This dass of tools provides services (e.g. con-

trol and meta-information) to consultants or
clients. Tools functioning as facilitators exist at

L

I

N

K I I PART

(a)

interface functions

communication subsystem
(b)

L

I

N

K

Figure 1. VAS model of actors and links, and its
incorporation in MDFS

node level (e.g. the daemon that handles node
communication) as well as at system level (e.g.
the portmapper server). The addresses of facili-
tators are well-known addresses; well-known ad-
dresses are assumed to be inherently known to all
tools.

3.1.1. The p o r t m a p p e r server
This server is needed because services offered

by MDFS may bind to different ports each time
the corresponding tools are activated as well as
when they are executed on different machines.
The portmapper server contains information on
the logical-physical address correspondence of
these services, so that these may be accessed by
any tool through this server. Servers bind a port
dynamically and inform the portmapper server
about this binding.

The adopted solution of using a portmapper
server provides great flexibility since every new
service becomes available systemwide once it i-
dentifies itself to the portmapper. Thus, based
(m VAS model, MDFS demonstrates an extensi-
ble architecture that enable new services to be
added to the system by application programmer-

daisy
Rectangle

672 A. Kamoas ot aL

PORTMAPPER

' 0 = ~ ~ client
.~//~ facilitato~ ~ = : ~ ~

consultant / [1 ~ U
['] ~ f l / ~ / f~ OTHER / \ TOO
sERTE~R / I / \ consultant

consultant // consulta.t
DOCUMENT SOUND SERVER
SERVER SERVER

Figure 2. The structure of VAS society of MDFS
tools

s and developers. The alternative of maintain-
ing the correspondence between remote services
and ports in a file duplicated on each node has
the disadvantage of requiring the updating of all
those files whenever new remote services are in-
troduced.

3.1.2. The internode communication daemon
Communication between servers residing on d-

ifferent nodes is accomplished by using a special
daemon process at every node. Every tool that
needs to communicate with a remote tool, send-
s its message to the local communication dae-
mon; the message is enqueued in the node outgo-
ing queue, and then the daemon transmits it to
the remote site using a well-established procedure
[10]. Thus, the daemon acts as a node facilitator
which provides logical-physical address mapping
for all system nodes. The main advantage of this
design is that it permits asynchronous communi-
cation to take place. It also enables the designer
to take advantage of a message priority scheme
that would apply to all messages leaving the n-
ode, independent of the priorities of the tools that
produced them. Note that the daemon is used
only for communication with a tool residing on a
different node. For communication with tools of

the same node, the tool links are sufficient.

3.2. The consultants: the structure of VAS
MDFS servers

The structure of each MDFS server follows the
actor-link model of VAS (figure 1.b). The serv-
er's links are implemented within the communi-
cation subsystem, while the server's behavioural
part contains the driver, which is the uppermost
operation layer. The server's functional part con-
tains the interface functions and the object func-
tions. The former receive the appropriate param-
eters ~om the behavioural part, handle the de-
tails of the caching and buffering subsystem using
appropriate object handlers and finally call the
object functions, which are low-level implemen-
tation functions that perform operations specific
to the media objects that the server handles.

The driver and the communication subsystem,
which are both presented in the rest of this sub-
section, have similar structure for all the MDFS
servers independently of the media on which they
operate. In contrast, the remaining components
(especially the object functions) depend heavily
on the object's properties (e.g. real-time con-
straints for the playback of digital andio/video);
a discussion of these would introduce technical
details and is beyond the scope of this paper.

3.2.1. The driver
The driver starts by initializing parts of the

communication subsystem of the server (e.g. it
restores the cache contents saved after the last ac-
tivation of the tool). Then the entire caching sub-
system is initialized, which as we have described is
used to speed-up execution. Also buffers for the
buffering subsystem are allocated. These buffers
are of great importance to continuous media ser-
vers, since they can be used to reduce media play-
l~ck variations. After performing those initializa-
tion chores the driver creates a child process that
inherits all the environment (descriptors, priority,
values of variables etc.) of the parent process ex-
cept that it runs in background. The background
execution of the server is possible since the oper-
ating system shell which creates and executes all
the user entered commands waits only for those
commands to exit and not for their children. In

daisy
Rectangle

Multimedia subsystem of a distributed authoring environment 673

this way all the servers that constitute the MDFS
can be spawned without requiring from the user
an explicit specification of the background pro-
cessing. The parent process exits and closes au-
tomatically any open descriptors.

The child process continues its operation by
waiting to accept requests on its socket. Each
request specifies the request type in one of it-
s header fields. The other fields are dependent
on the particular request. Both the server and its
clients know the format of the request and reply.

In addition, the driver performs two tasks by
calling the request type-specific handler: it re-
trieves parameters from packets, and it calls the
interface functions which are responsible for cache
management and for preparation of the appropri-
ate calls to the object functions

Finally, the driver queues all the correct incom-
ing messages before passing them to the func-
tional part. The three phase message process-
ing scheme adopted in VAS (tool interface -
behavioural part - functional part) enables the
pipelining of the process and consequently speeds
up execution (by increasing the degree of multi-
programming on a system that runs many VAS
servers). Note that the driver, if needed, can
adapt incoming messages to a format accepted by
the interface and the object functions of the tool
(e.g. transform the format of a picture message).

3.2.2. The tool communication subsystem
The communication subsystem of MDFS en-

capsulates all the communication protocol-
related functionahty. It is responsible for correct-
ly accepting and transmitting messages. Purther-
more, its performance is enhanced by caching the
logical-physical address mapping of the most fre-
quently used destination tools. It also performs
network-to-host conversion of incoming packet-
s (e.g. reassembly of original incoming messages
out of network packets) and validity checks to de-
tect erroneous transmissions. Each MDFS server
keeps a table mapping the request types to re-
quest handlers. Each request handler is called
automatically ou the arrival of a request packet
from the client; the packet specifies the request
type in its header. This design falitates the ex-
tension of the server by adding new request types

along with their corresponding handlers. Mes-
sages are then passed to the behavioural part of
the tool. As fax as outgoing messages are con-
cerned, the tool communication subsystem is re-
sponsible for forming packets acceptable by the
network, and for calling the appropriate routine
for packet transmission.

4. Distribution of multimedia objects

The design of MDFS provides a totally trans-
parent access to the stored information by adapt-
ing the developed technology for distributed file
systems to the particular needs of the stored Innl-
timedia objects (e.g. images, voice ropes, text).

VAS application developers that will use MDFS
as the underlying support for the development
of more complex applications must be provided
with simple operations on the basic types of ob-
jects (e.g. images, voice ropes, text strings etc.)
that act the same independently of where the ob-
ject resides. Clearly, there exists a performance
penalty in accessing the remote objects, but it
must be kept within affordable limits. This is the
well known principle of access transparency [14].

In order to obtain efficient distribution of mul-
timedia objects, we use a distributed file system
tree that links these objects, a naming mechanis-
m that translates the uniform naming scheme to
the node-specific one and caching and buffering
techniques at the client's site.

4.1. Dis t r ibut ion of the file system tree
The basic mechanism that supports the distri-

bution of multimedia objects in MDFS is the dis-
tribution of the file system tree. In this section,
the terms file and object are used interchangeably.
An object only resides on the storage resources of
a single node of the network.

MDFS divides the accessible name space from
each node into two parts:

• the local namespace

• the shared namespace

We examine each of these parts in turn and
then we investigate load-balancing issues of the
shared namespace.

daisy
Rectangle

674 A. Kameas et aL

4.1.1. The local namespace
The local namespace is used to keep private

files and temporary, intermediate results of the
various operations. It is important to localize in-
termediate operations in the production of VAS
frames in order to be able to add client tools with-
out increasing significantly the load at the servers.
For example, the voice rope editing operations of
a VAS voice editor tool create many temporary
voice ropes that do not concern a remote voice
server. This local storage system can either use
tim underlying operations of the local file system
or build new file system structures in order to
cope effectively with the pecularities of the stored
media (e.g. real-time constraints of continuous
media, large sizes of images). The former ap-
proach is more suitable for prototyping since it
has the advantages of simplicity and requires lit-
tle additional code to be added. In the current
design, MDFS uses ordinary UNIX (specifically
SunOs 4.0) flies for the storage of both the local
and the remote files. The improved redesign of
the UNIX filesystem introduced with 4.3 BSD dis-
tribution [11] seems to be quite adequate to satis-
fy the demands of most multimedia application-
s. Clearly, applications that handle heavy loads
of requests for continuous media must follow the
latter approach by using specialized storage and
communication structures to cope with the real-
time demands of those requests (for more details
about how these requirements may be technically
solved the reader is refered to [15]).

4.1.2. The shared lmmespaee
Symbolic links can be specified in order to ac-

cess commonly used remote objects more conve-
niently and efficiently. The symbolic link acts as
a direct pointer to the underlying object. For
example to identify a remote file of a UNIX file
system a symbolic link must specify both the ma-
chine identification and the corresponding i-node
number. In this way a full search of the shared
namespace for the file is avoided. This optimiza-
tion is heavily dependent on the file system where
the remote object resides. A file system that of-
fers low-level identifiers (e.g. i-nodes) for the s-
tored objects allows for more efficient remote ac-
cess than one in which the only way to access an

object is the full path-name translation, because
the symbolic links exploit the low-level identifiers
in order to refer directly to the remote object.

Direct accessibility of objects within each node
is restricted to the shared objects that reside on it.
Thus, in a large distributed system a very smal-
l fraction of the shared namespace is maintained
within each node. Remote objects and directories
are replaced by stubs (point 3 in figure 3 shows
two stubs, one for each custodian, for PC-6 MS-
DOS machine; devices C and D denote hard disk
partitions), which indicate where to continue the
search for an object. More specifically they iden-
tify the custodian [13] for that object. The cus-
todian is a server process which is responsible for
keeping and optimizing the storage for all the ob-
jects which form a snbtree in the file system tree
representation and for servicing the requests for
those objects (more like a server facilitator). The
custodian organisation of the shared namespace is
valuable in achieving expandability and load bal-
ancing, while avoiding bottlenecks, and results in
a system practically of unlimited growth, as will
become more apparent from the discussion that
follows.

A custodian location table (CSL) that maps the
custodians to their Internet addresses is replicat-
ed at every node. The system performs transpar-
ent remote access when it falls upon stub points
by looking up this map. More specifically, the s-
tubs keep only the custodian identification. The
actual address is retrieved from the custodian lo-
cation map. This permits changing the location
of a custodian without affecting the stub entries
of the object system trees. Only the map replicas
need to be updated (point 5 in figure 3 shows two
example custodian location table entries).

4.1.3. Redistribution and Load balancing
Since large multimedia applications require

enormous amounts of storage and computing
power it would be better if they were distributed
over ma~y machines. In order to obtain the bene-
fits of distribution it is necessary to have a mech-
anism that maintains the load balanced over the
network. Thus, the current UNIX-based design
of MDFS is supported by an on-line performance
monitor. This monitor collects performance da-

daisy
Rectangle

Multimedia subsystem of a distributed authoring environment 675

local symbolic links shared

| J PC-6, R 41 remote nodes

" / ~ C:\V1 352

5

cust custodian
id (or volume)

352 [PC-6]C:\V 1

353 [PC-6]C:\V2

[nternet Addr.
of PC-6

192.43.235.6

192.43.235.6

port
number

1600

1640

C:\V2 353

D:\V3 354 3

C

VI V2

2 2

D

\
V3

/oN
2

Figure 3. The distributed file system tree as seen by a UNIX node (e.g. "naxos5")

ta both at the individual node level and at the
custodian level. The collected data can be used
by off-line tools which after performing statisti-
eal analysis (m them can suggest the best possible
(probabilistically) actions in order to redistribute
the load uniformly. Such a redistribution is a very
heavyweight operation; that is why it must be
performed off-line. The monitor design and im-
plementation in a UNIX LAN environment will
be reported in a future work.

In order to redistribute multimedia objects we
rely on the custodian organisation of the object
system tree. A collection of objects that is man-
aged by the same custodian is referred to as a
vo/ume. Clearly, a volume constitutes a subtree
at the tree representation of the MDFS name s-
pace. In the current design there exists a (me-to-
one mapping between custodians and their vol-
umes. The organization into custodians permits
the usage of different indexing and data storage
structures for each volume since these details ate

encapsulated in the volume's custodian. This is
extremely important since the system must oper-
ate on the various types of multimedia data which
have diverse properties and thus call for the use
of specialized structures to cope with the partic-
ular needs of each. It is also important to observe
that the size of CSL grows linearly with the num-
ber of custodians. This, combined with the fact
that every custodian can handle a very large num-
ber of objects (e.g. all the course frames of one
WORM drive) allows VAS to keep huge amounts
of information with very little overhead at each
node.

As a specific example consider the case where
each workstation is equipped with 500Mb local
storage. An entry in the custodian-location map
needs at least 6 bytes (4-byte Internet address
plus 2-byte port number). By letting the custo-
dian identifier be 2 bytes, about 10 bytes for every
entry ate wasted. Then, assuming a network of 50
nodes, a space of 0.5Kb for the volume location

daisy
Rectangle

676 A. Kameas at al.

map at every node yields access to 500 • 50 : 25
Gb. With a course frame of approximately 1Mb
we can have courses consisting of 25000 frames.
The total wasted space is 0.5K at each of the 50
network nodes, thus only 25Kb.

The redistribution of objects can be performed
both by object movement, where an object moves
between volumes, and by volume movement,
where a volume moves between nodes. We are
in the process of l:*rforming extensive simulation
experiments concerning the performance of the
volume movement algorithm. This algorithm is
as follows:

1. keep a flag copy-on-write initialised to
FALSE

2. construct a machine independent represen-
tation of the volume

3. ship that representation to the remote site

4. regenerate the multimedia objects at the re-
mote site

5.

.

if copy-on-write changes to TRUE (writes
on volume's objects while copy was exe-
cuted, dirty volume) then repeat from step
1, retransmitting only the changed objects.
The interarrival time of the write requests
to the volume's objects is the critical factor
in determining volume dirtyness.

after the second (possible) update, freeze
the volume. For all the services offered by
the moved volume inform the portmapper
for their change. Also, broadcast a message
in order to update the volume location map
of each node by recording the new position
of the moved volume.

A similar algorithm was used at the migration
process of fries in the distributed file system de-
scribed in [13] but little work has been done on
the important topic of the migration of multime-
dia objects.

4.2. Naming
MDFS adopts a uniform naming scheme for its

objects. This means that independently of where

an object resides and what it represents (e.g.
text, image) it is accessed using the same nam-
ing scheme. We chose to adopt the UNIX tree-
structured file system naming scheme since it is
flexible and widely used. The naming mechanism
performs the task of mapping a path name that
uses the MDFS conventions (which are UNIX-
like) to the appropriate name of the Local Mul-
timedia File System (LMFS). Under the root of
the MDFS tree the directories flocaI, which con-
tains the local namespace, and /shared are po-
sitioned. The cmly files under the root axe the
symbolic links to the more frequently used re-
mote files. Directly under the /shared directory
the locally stored part of the shared namespace
(local file system) is mounted. For example, at
a UNIX workstation named "naxos5" the local
UNIX filesystem is mounted as indicated in fig-
ure 3 (point 1), under the / shared directory there
exists one stub for each custodian (point 3, same
figure), while a flag R (point 4, same figure) de-
notes that machine PC-6 is remote.

An MS-DOS image object named X-Ray10 re-
siding at the MS-DOS directory C:/ radiology/
xrays at machine PC-6 (point 2, same figure) will
translate to an MDFS path name /PC-6/C/ra-
diology/ xrays/X-RaylO. The MDFS design ap-
proach consists of using prefix patterns and spec-
if-ying replacements [3]. A prefix pattern is (me
that begins from the root (e.g. /PC-6/C/ radi-
ology/ xrays is a prefix pattern while the above
pattern as bpattern in /VC-5/D/PC-6/C/ra-
Co/ogy/xrays is not and it cannot be replaced).

As an example of the functionality of the nam-
ing mechanism consider a course frame named A-
~ens with full local pathname on a DOS ma-
chine (7/ Geography/ dries/Athens. The syn-
tactic namespace software translates the uniform
pattern used by MDFS (i.e. /7ocal/ Geography/
cities/Athens) to the locally understandable (me
(i.e. the above DOS pathname).

4.3. Caching and Buffering
In order to obtain efficiency an additional

caching scheme is used at the client's site. This
caching scheme is particularly adequate for large
objects like course frames. A course frame is read
in its entirety in one operation and is cached at

daisy
Rectangle

Multimedia subsystem of a distributed authoring environment 677

the client's site. Since most course f~ames are
read-only their access is particularly efficient since
no call-backs are required. The call-back mecha-
nism [13] provides the server with a way to inform
the clients of a shared object that some operation
has changed the object. Thus, the clients are noti-
fied that the object that they have cached locally
is not the most current.

In order to support continuous media as voice
it is necessary to provide an effective buffering
scheme. Buffering can be provided at the server's
site or at the client's or at both. The MDFS de-
sign uses buffering at the server site in order to
simplify the development of client applications.
The server through the read-ahead that performs
with its buffering subsystem tries to guarantee a
media stream to the client that satisfies the con-
tinuity requirements [12]. Optionally, the client
can use additional buffering in order to further
smooth the variations.

5. Conclusions

We have presented the design and architecure
of the multimedia subsystem (MDFS) of a dis-
tributed authoring environment (VAS). We have
addressed a number of design issues that come up
in multimedia filing systems (it is not technically
feasible to address all the important design issues
of such systems in a work of this kind), and have
shown that this design meets many of the perfor-
mance and functionality requirements that users
have of such tools. This is a result of both the
underlying model that VAS supports (based on
the notion of actors) and the implementation de-
risions we made along the way.

By using this model in the MDFS design, we
have constructed a robust and efficient distribut-
ed system that may evolve in time with the ad-
dition of new services. Moreover, CFC model
supports the dynamic nature of VAS by enabling
certain tools (i.e. facilitators) to "dynamically"
change their roles in VAS society. In order to im-
plement a prototype of MDFS, we have used the
Berkeley UNIX socket library, creating a system
that may be distributed over a network as com-
mon as Internet (non-UNIX nodes that support
sockets can also access MDFS). Other importan-

t design desicions include the distribution of the
file system tree together with the use of a uni-
form naming scheme for media objects to achieve
location transparancy, the support of caching and
buffering at each client site together with the use
of pipelining in message processing by tools to
speed up execution and to handle continuous me-
dia objects, the use of custodians to support dis-
tributed media storage and media migration, and
the use of an on-line performance monitor for
load balancing and redistribution.

VAS design takes into account the differen-
t classes of users that may use the system.
A coarse-grain classification distinguishes three
such classes: end-users (VAS application users),
system users (VAS application developers) and
system administrators. Although in many cases
these classes may overlap, care has been taken to
define roles in the process and to represent each
role with an autonomous tool. In this way, users
are forced to assume different roles for different
tasks and thus become part of the system model.

We are currently finishing with the implemen-
tation of basic MDFS functions, and we are
developing a special database server that offer-
s database services using the same model as in
MDFS. In the near future we plan to conduc-
t simulation studies on the performance of the
system using mathematical models and simula-
tion tools [7]. These will enable us to relate the
implementation of MDFS to the network perfor-
mance (which is critical parameter for system per-
formance) more tightly, and hopefully to come to
new conclusions about the "dynamics" of such
systems. Furthermore, we will concern ourselves
with issues related to object specification, object
retrieval and system usability.

R E F E R E N C E S

1. S.S. Adams and A.K. Nabi, Neural Agents - A
Frame of N£nd. Proceedings of the OOPSLA-
89 Conference, New Orleans, USA, Oct. 1-6,
1989, pp 139-149.

2. G. Agha and C. Hewitt, Concurrent Program-
ruing Using Actors. In Object-Oriented Con-
current Programming (A. Yozenawa and M.
Tokoto eds), The MIT Press, 1987, pp 37-53.

daisy
Rectangle

678 A. Kameas et al.

3. D. Commer, Operating Systems Design Vol.
I/. Prentice-Hall, 1987.

4. M. Derks and W. Bulthuis, A framework for
authoring tool integration. In Learning Tech-
nology in the European Communities (S.A.
Cerri and J. Whiting eds), Kluwer Academic
Publishers, 1992, pp 549-563.

5. 3. Gait, The optical file cabinet: A ran-
dom access file system for Write-Once optical
disks. IEEE Computer, 21(6), 1988, pp 11-22.

6. S. Gibbs, D. Tsichritzis, A. Fitas, D. Kon-
stantas and Y. Yeorgaroudakis, MUSE: A
multimedia filing system. IEEE Software,
4(2), 1987, pp 4-15.

7. A. 3avor, An A/supported tool for simulation
in informatics. Syst. Anal. Model. Simul. 8,
1991.

8. A. Kameas, S. Papadimitriou mad P. Pintelas,
Modeling an authoring environment. Present-
ed at the Systems Simulation and Scientific
Modeling conference mn by the Chinese As-
sociation of Systems Simulation, Beijing, Peo-
ples Republic of China, Oct 20-23, 1992.

9. A. Kameas, S. Papadimitriou and P.Pintelas,
Modeling and design of a Virtual Au-
thoring Environment. Technical Report TR
93.04.17, Computer Technology Institute, 3
Kolokotroni st., 26221 Patras, Greece, 1993.

10. A. Kameas, S. Papadimitriou and P.Pintelas,
The modeling and performance tuning of
the Distributed Multimedia ~ling System of
a Virtual Authoring Environment. Technical
Report TR 93.05.18, Computer Technology
Institute, 3 Kolokotroni st., 26221 Patras,
Greece, 1993.

11. S.3. Leflter, M.K. McKusick, M.3. Karels and
J.S. Quarterman, The design and implemen-
tation of the UNIX 4.3BSD operating system.
Addison-Wesley, 1989.

12. P. Venkat Rangaa and I-I.M. Vin, Design-
ing file systems for digital video and audio.
Proceedings of the 13th ACM Symposium on
Operating Systems Principles, Pacific Grove,
USA, Oct 13-16, 1991, pp 81-94.

13. M. Satyanarayanan, Distributed file system-
s~ In Distributed Systems (S. Mullender ed),
ACM Press, 1991, pp 149-188.

14. P.K. Sinha, M. Maekawa, K. Shimizu, X. Jia,

H. Ashihara, N. Utsunomiya, K.S. Park and
H. Nakamo, The Galaxy distributed operat-
ing system. IEEE Computer, 24(8), 1991, pp
34-41.

15. D.B. Terry and D.C. Swinehart, Managing s-
tored voice in the Etherphone System. ACM
3}ans. on Comp. Systems, 6(1), 1988, pp 3-
27.

daisy
Rectangle

