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In this paper, the model and architecture of the multimedia subsystem of a distributed authoring environment 
called VAS (Virtual Authoring System) axe presented. VAS is an authoring environment that integrates various 
tools and provides a common communication basis for the tools and the designers who use them. Its underlying 
model is based on existing actor models, implementing all the society-modeling capabilities these models exhibit, 
while the Client Facilitator Consultant model is used to model the systemwise tool behaviour. The Multimedia 
Distributed Filing System (MDFS) of VAS meets many requirements users have from multimedia systems and 
uses VAS model to provide system users with transparent access to multimedia objects. MDFS consists of many 
co-operating servers, which implement VAS actor-based model. To take advantage of many well-established 
standards, MDFS communications have been implemented upon the Berkeley Unix socket library. The distributed 
nature of VAS offers a new perspective to the authoring process and the system's object-oriented model has led 
to an open-ended architecture, which permits the integration of new tools and supports the system's evolution 
to meet new emerging requirements. 

1. I n t r o d u c t i o n  

VAS is not an authoring system in the classical 
sense. It may rather be described as a society of 
tools cooperating towards courseware production 
(VAS does not exist as a system - hence the term 
"virtual" - but is composed of autonomous, com- 
municating tools which may be distributed over 
a network), leading to a concurrent execution of 
the phases of courseware development; still this 
process will appear integrated and continuous to 
developers. To model systemwise tool behaviour, 
we me a model based on an analogy of human col- 
laborative efforts, namely the Cl ien t  - F a c i l i t a t o r  

- C o n s u l t a n t  ( C F C )  model [1]. 
In this paper, we concentrate on the multi- 

media subsystem of VAS, and especially on the 
Multimedia Distributed Filing System (MDFS), 
[10] which in fact consists of many cooperating 
servers. .M1 tools communicating with this sub- 
system are modeled as clients to the multimedia 
servers, which are the consultants of the system. 

There exist however certain servers which provide 
recta-services these are the facilitators of MDFS 
(figure 2). The general idea behind this scheme 
is to take advantage of the aggregate storage and 
computational  capabilities of the distributed sys- 
tem. 

Multimedia objects are fundamentally differ- 
ent from the classical text data and database 
records, and impose heavy performance require- 
ments on any underlying system. Among other- 
s, these include the need to cope with the pe- 
culiarities of each media type, the provision of 
a flexible and efficient scheme in order to meet 
very large storage space requirements, and the 
support of synchronization structures in order to 
meet real-t ime constraints that result t~om con- 
tinuous media streams and associated operations 
(like recording and retrieval of continuous media 
streams, which may in fact be of different type). 

While many multimedia filing systems have 
been implemented [12, 5] a t tempting to meet 
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these requirements, most of them are centralized, 
non-extensible designs with restricted transparen- 
cy, extensibility, availability, reliability or perfor- 
mance. Many such systems comprise a set of tools 
built around a centralized media objects storage 
[4], with attention drawn to the types and at- 
tributes of stored objects rather than to physical 
access issues (which are delegated to the "under- 
lying network"). In designing VAS we adopted 
many solutions used in MUSE system [6] (like 
usage of Unix environment, creation of multiple 
server processes, modularity in design etc). 

MDFS is extensible and capable of incremental 
growth, so that new media servers, client applica- 
tions and machines may be added ~ removed at 
any time, permiting VAS not only to improve the 
quantity of services offered (e.g. addition of new 
tools), but also to evolve in quality (e.g. defini- 
tion of new roles). The modular design Of MDFS 
also permits the modification of the servers in or- 
der to meet the particular requirements of the 
media each supports, while the CFC model also 
permits tools to dynamically change their roles 
in VAS society (facilitators), contrasted with tra- 
ditional dient-server models [3]. The real time 
constraints imposed by continuous media are con- 
f~onted by using buffering at the dient side and by 
supporting a flexible communication scheme that 
permits critical messages to gain priority Of trans- 
mission. Finally, an online performance monitor 
is provided, which can detect heavily-loaded n- 
odes and provide a detailed view Of each node 
workload. 

To achieve efficient usage of expensive multime- 
dia machines and to meet storage requirements, 
VAS adopts a distributed storage scheme for me- 
dia objects. This distributed architecture allows 
for data replication and built-in redundancy in all 
the critical resources that may fail. Thus the sys- 
tem can overcome arbitrary single-point failures 
and offers a high degree of availability. Commu- 
nication between servers is based on the widely 
available Berkeley UNIX socket library. The In- 
ternet Domain socket type permits the servers to 
communicate uniformly independently of whether 
or not they reside on the same machine, achiev- 
hag location independence. Using this library also 
promotes portability: MDFS servers can run on 

any UNIX machine, and with minor modification- 
s on non-UNIX machines, provided these sup- 
port socket-based interprocess communication. 
In addition, VAS supports both synchronous and 
asynchronous communication modes using special 
tools that act as "facilitators". 

Robustness is achieved by making servers state- 
less, since the response of a stateless server does 
not depend in any way on the history of previ- 
ous requests. In ~der  to make a server stateless, 
we have avoided using descriptor based address- 
hag and maintaining position and current direc- 
tory information. Instead, to make the system 
efficient, we used a combination of caching and 
buffering techniques. Caching exploits the locali- 
ty of program behaviour: each server caches the 
descriptors of the most frequently used objects. 
The cache replacement policy currently in use is 
LRU (Least Recently Used), which exploits the 
locality usually observed ha most program access 
patterns (for example, a server that uses LRU re- 
allocates the cache resources used by a client that 
failed). Buffering takes advantage of the fact that 
most requests handle information sequentially. 

In the next section, the architecture and un- 
derlying model of VAS are presented. We then 
focus on MDFS and present its architectural de- 
sign and most important characteristics. Subse- 
quently we present some implementation issues 
that arise from the distributed nature of the sys- 
tem and the solutions we adopted. Finally we 
conclude with the presentation of future research 
directions. The reader should note that technical 
solutions to design issues, where provided, are not 
described extensively due to space limitations (to 
be frank, we believe that each solution to a de- 
sign issue would require a separate publication in 
order to be properly described). 

2. VAS model and architecture 

VAS underlying model is heavily based on ex- 
isting actor models (i.e. [2]). An actor system is 
composed of actors that communicate with e~ch 
other by exchanging messages. Everything in the 
system, at any level of granularity, is represent- 
ed as actors capable of receiving and responding 
to messages. Messages are themselves actors, too. 
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Multimedia subsystem of a distributed authoring environment 671 

To envisage VAS architecture, one must think of a 
network of interconnected tools that interact con- 
tinuously with each other and with the system en- 
vironment using links [8, 9]. Both tools and links 
are actors. To make, however, the modeling and 
analysis of VAS easier, we have grouped the tools 
it incorporates into five classes (subsystems) [9]: 
the computational subsystem, the expert subsys- 
tem, the multimedia subsystem, the reusability 
subsystem, and the user interface subsystem. 

A tool is an autonomous, integrated compu- 
tational unit that produces a certain clement of 
the course (e.g. a frame), or offers a service in 
the authoring process. The internal tool struc- 
ture is made up of a behavioural and a functional 
part (figure 1.a). The behavioural part incorpo- 
rates the functional constraints of the tool: what 
kinds of input (commands and data) it responds 
to, which are the other tools it may communicate 
with, what happens to the inadequate messages 
it receives, etc. The functional part is the pure 
computational part: it is composed of the pro- 
cedures and functions the tool uses to transform 
tool input into output. Links are used to repre- 
sent the tool's communication environment and 
facilitate the transportat ion of messages. The 
link notion descended from dataflow models; only 
in our model, links are active entities represented 
with actors. The set of links forms the interfac- 
ing part of a tool. A link's behavioural part con- 
tains the physical addresses of tools together with 
type matching information, while in its function- 
a/part ,  the message transportation and transfor- 
mation functions are included. Messages being 
themselves actors, have a behavioural part that 
may be interpreted as a header and a functional 
part that activates the appropriate handler. 

3. MDFS society ¢f tools 

In this section we present the tools of the mul- 
timedia subsystem of VAS and describe the role 
each has within VAS society. 

3.1. The facilitators 
This dass of tools provides services (e.g. con- 

trol and meta-information) to consultants or 
clients. Tools functioning as facilitators exist at 
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Figure 1. VAS model of actors and links, and its 
incorporation in MDFS 

node level (e.g. the daemon that handles node 
communication) as well as at system level (e.g. 
the portmapper server). The addresses of facili- 
tators are well-known addresses; well-known ad- 
dresses are assumed to be inherently known to all 
tools. 

3.1.1. The p o r t m a p p e r  server 
This server is needed because services offered 

by MDFS may bind to different ports each time 
the corresponding tools are activated as well as 
when they are executed on different machines. 
The portmapper server contains information on 
the logical-physical address correspondence of 
these services, so that these may be accessed by 
any tool through this server. Servers bind a port 
dynamically and inform the portmapper server 
about this binding. 

The adopted solution of using a portmapper 
server provides great flexibility since every new 
service becomes available systemwide once it i- 
dentifies itself to the portmapper. Thus, based 
(m VAS model, MDFS demonstrates an extensi- 
ble architecture that enable new services to be 
added to the system by application programmer- 
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Figure 2. The structure of VAS society of MDFS 
tools 

s and developers. The alternative of maintain- 
ing the correspondence between remote services 
and ports in a file duplicated on each node has 
the disadvantage of requiring the updating of all 
those files whenever new remote services are in- 
troduced. 

3.1.2. The internode communication daemon 
Communication between servers residing on d- 

ifferent nodes is accomplished by using a special 
daemon process at every node. Every tool that 
needs to communicate with a remote tool, send- 
s its message to the local communication dae- 
mon; the message is enqueued in the node outgo- 
ing queue, and then the daemon transmits it to 
the remote site using a well-established procedure 
[10]. Thus, the daemon acts as a node facilitator 
which provides logical-physical address mapping 
for all system nodes. The main advantage of this 
design is that it permits asynchronous communi- 
cation to take place. It also enables the designer 
to take advantage of a message priority scheme 
that would apply to all messages leaving the n- 
ode, independent of the priorities of the tools that 
produced them. Note that the daemon is used 
only for communication with a tool residing on a 
different node. For communication with tools of 

the same node, the tool links are sufficient. 

3.2. The consultants: the structure of VAS 
MDFS servers 

The structure of each MDFS server follows the 
actor-link model of VAS (figure 1.b). The serv- 
er's links are implemented within the communi- 
cation subsystem, while the server's behavioural 
part contains the driver, which is the uppermost 
operation layer. The server's functional part con- 
tains the interface functions and the object func- 
tions. The former receive the appropriate param- 
eters ~om the behavioural part, handle the de- 
tails of the caching and buffering subsystem using 
appropriate object handlers and finally call the 
object functions, which are low-level implemen- 
tation functions that perform operations specific 
to the media objects that the server handles. 

The driver and the communication subsystem, 
which are both presented in the rest of this sub- 
section, have similar structure for all the MDFS 
servers independently of the media on which they 
operate. In contrast, the remaining components 
(especially the object functions) depend heavily 
on the object's properties (e.g. real-time con- 
straints for the playback of digital andio/video); 
a discussion of these would introduce technical 
details and is beyond the scope of this paper. 

3.2.1. The driver 
The driver starts by initializing parts of the 

communication subsystem of the server (e.g. it 
restores the cache contents saved after the last ac- 
tivation of the tool). Then the entire caching sub- 
system is initialized, which as we have described is 
used to speed-up execution. Also buffers for the 
buffering subsystem are allocated. These buffers 
are of great importance to continuous media ser- 
vers, since they can be used to reduce media play- 
l~ck variations. After performing those initializa- 
tion chores the driver creates a child process that 
inherits all the environment (descriptors, priority, 
values of variables etc.) of the parent process ex- 
cept that it runs in background. The background 
execution of the server is possible since the oper- 
ating system shell which creates and executes all 
the user entered commands waits only for those 
commands to exit and not for their children. In 
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this way all the servers that constitute the MDFS 
can be spawned without requiring from the user 
an explicit specification of the background pro- 
cessing. The parent process exits and closes au- 
tomatically any open descriptors. 

The child process continues its operation by 
waiting to accept requests on its socket. Each 
request specifies the request type in one of it- 
s header fields. The other fields are dependent 
on the particular request. Both the server and its 
clients know the format of the request and reply. 

In addition, the driver performs two tasks by 
calling the request type-specific handler: it re- 
trieves parameters from packets, and it calls the 
interface functions which are responsible for cache 
management and for preparation of the appropri- 
ate calls to the object functions 

Finally, the driver queues all the correct incom- 
ing messages before passing them to the func- 
tional part. The three phase message process- 
ing scheme adopted in VAS (tool interface - 
behavioural part - functional part) enables the 
pipelining of the process and consequently speeds 
up execution (by increasing the degree of multi- 
programming on a system that runs many VAS 
servers). Note that the driver, if needed, can 
adapt incoming messages to a format accepted by 
the interface and the object functions of the tool 
(e.g. transform the format of a picture message). 

3.2.2. The tool communication subsystem 
The communication subsystem of MDFS en- 

capsulates all the communication protocol- 
related functionahty. It is responsible for correct- 
ly accepting and transmitting messages. Purther- 
more, its performance is enhanced by caching the 
logical-physical address mapping of the most fre- 
quently used destination tools. It also performs 
network-to-host conversion of incoming packet- 
s (e.g. reassembly of original incoming messages 
out of network packets) and validity checks to de- 
tect erroneous transmissions. Each MDFS server 
keeps a table mapping the request types to re- 
quest handlers. Each request handler is called 
automatically ou the arrival of a request packet 
from the client; the packet specifies the request 
type in its header. This design falitates the ex- 
tension of the server by adding new request types 

along with their corresponding handlers. Mes- 
sages are then passed to the behavioural part of 
the tool. As fax as outgoing messages are con- 
cerned, the tool communication subsystem is re- 
sponsible for forming packets acceptable by the 
network, and for calling the appropriate routine 
for packet transmission. 

4. Distribution of multimedia objects 

The design of MDFS provides a totally trans- 
parent access to the stored information by adapt- 
ing the developed technology for distributed file 
systems to the particular needs of the stored Innl- 
timedia objects (e.g. images, voice ropes, text). 

VAS application developers that will use MDFS 
as the underlying support for the development 
of more complex applications must be provided 
with simple operations on the basic types of ob- 
jects (e.g. images, voice ropes, text strings etc.) 
that act the same independently of where the ob- 
ject resides. Clearly, there exists a performance 
penalty in accessing the remote objects, but it 
must be kept within affordable limits. This is the 
well known principle of access transparency [14]. 

In order to obtain efficient distribution of mul- 
timedia objects, we use a distributed file system 
tree that links these objects, a naming mechanis- 
m that translates the uniform naming scheme to 
the node-specific one and caching and buffering 
techniques at the client's site. 

4.1. Dis t r ibut ion of the file system tree 
The basic mechanism that supports the distri- 

bution of multimedia objects in MDFS is the dis- 
tribution of the file system tree. In this section, 
the terms file and object are used interchangeably. 
An object only resides on the storage resources of 
a single node of the network. 

MDFS divides the accessible name space from 
each node into two parts: 

• the local namespace 

• the shared namespace 

We examine each of these parts in turn and 
then we investigate load-balancing issues of the 
shared namespace. 
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4.1.1. The local namespace 
The local namespace is used to keep private 

files and temporary, intermediate results of the 
various operations. It is important to localize in- 
termediate operations in the production of VAS 
frames in order to be able to add client tools with- 
out increasing significantly the load at the servers. 
For example, the voice rope editing operations of 
a VAS voice editor tool create many temporary 
voice ropes that do not concern a remote voice 
server. This local storage system can either use 
tim underlying operations of the local file system 
or build new file system structures in order to 
cope effectively with the pecularities of the stored 
media (e.g. real-time constraints of continuous 
media, large sizes of images). The former ap- 
proach is more suitable for prototyping since it 
has the advantages of simplicity and requires lit- 
tle additional code to be added. In the current 
design, MDFS uses ordinary UNIX (specifically 
SunOs 4.0) flies for the storage of both the local 
and the remote files. The improved redesign of 
the UNIX filesystem introduced with 4.3 BSD dis- 
tribution [11] seems to be quite adequate to satis- 
fy the demands of most multimedia application- 
s. Clearly, applications that handle heavy loads 
of requests for continuous media must follow the 
latter approach by using specialized storage and 
communication structures to cope with the real- 
time demands of those requests (for more details 
about how these requirements may be technically 
solved the reader is refered to [15]). 

4.1.2. The shared lmmespaee 
Symbolic links can be specified in order to ac- 

cess commonly used remote objects more conve- 
niently and efficiently. The symbolic link acts as 
a direct pointer to the underlying object. For 
example to identify a remote file of a UNIX file 
system a symbolic link must specify both the ma- 
chine identification and the corresponding i-node 
number. In this way a full search of the shared 
namespace for the file is avoided. This optimiza- 
tion is heavily dependent on the file system where 
the remote object resides. A file system that of- 
fers low-level identifiers (e.g. i-nodes) for the s- 
tored objects allows for more efficient remote ac- 
cess than one in which the only way to access an 

object is the full path-name translation, because 
the symbolic links exploit the low-level identifiers 
in order to refer directly to the remote object. 

Direct accessibility of objects within each node 
is restricted to the shared objects that reside on it. 
Thus, in a large distributed system a very smal- 
l fraction of the shared namespace is maintained 
within each node. Remote objects and directories 
are replaced by stubs (point 3 in figure 3 shows 
two stubs, one for each custodian, for PC-6 MS- 
DOS machine; devices C and D denote hard disk 
partitions), which indicate where to continue the 
search for an object. More specifically they iden- 
tify the custodian [13] for that object. The cus- 
todian is a server process which is responsible for 
keeping and optimizing the storage for all the ob- 
jects which form a snbtree in the file system tree 
representation and for servicing the requests for 
those objects (more like a server facilitator). The 
custodian organisation of the shared namespace is 
valuable in achieving expandability and load bal- 
ancing, while avoiding bottlenecks, and results in 
a system practically of unlimited growth, as will 
become more apparent from the discussion that 
follows. 

A custodian location table (CSL) that maps the 
custodians to their Internet addresses is replicat- 
ed at every node. The system performs transpar- 
ent remote access when it falls upon stub points 
by looking up this map. More specifically, the s- 
tubs keep only the custodian identification. The 
actual address is retrieved from the custodian lo- 
cation map. This permits changing the location 
of a custodian without affecting the stub entries 
of the object system trees. Only the map replicas 
need to be updated (point 5 in figure 3 shows two 
example custodian location table entries). 

4.1.3. Redistribution and Load balancing 
Since large multimedia applications require 

enormous amounts of storage and computing 
power it would be better if they were distributed 
over ma~y machines. In order to obtain the bene- 
fits of distribution it is necessary to have a mech- 
anism that maintains the load balanced over the 
network. Thus, the current UNIX-based design 
of MDFS is supported by an on-line performance 
monitor. This monitor collects performance da- 
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Figure 3. The distributed file system tree as seen by a UNIX node (e.g. "naxos5") 

ta both at the individual node level and at the 
custodian level. The collected data can be used 
by off-line tools which after performing statisti- 
eal analysis (m them can suggest the best possible 
(probabilistically) actions in order to redistribute 
the load uniformly. Such a redistribution is a very 
heavyweight operation; that is why it must be 
performed off-line. The monitor design and im- 
plementation in a UNIX LAN environment will 
be reported in a future work. 

In order to redistribute multimedia objects we 
rely on the custodian organisation of the object 
system tree. A collection of objects that is man- 
aged by the same custodian is referred to as a 
vo/ume. Clearly, a volume constitutes a subtree 
at the tree representation of the MDFS name s- 
pace. In the current design there exists a (me-to- 
one mapping between custodians and their vol- 
umes. The organization into custodians permits 
the usage of different indexing and data storage 
structures for each volume since these details ate 

encapsulated in the volume's custodian. This is 
extremely important since the system must oper- 
ate on the various types of multimedia data which 
have diverse properties and thus call for the use 
of specialized structures to cope with the partic- 
ular needs of each. It is also important to observe 
that the size of CSL grows linearly with the num- 
ber of custodians. This, combined with the fact 
that every custodian can handle a very large num- 
ber of objects (e.g. all the course frames of one 
WORM drive) allows VAS to keep huge amounts 
of information with very little overhead at each 
node. 

As a specific example consider the case where 
each workstation is equipped with 500Mb local 
storage. An entry in the custodian-location map 
needs at least 6 bytes (4-byte Internet address 
plus 2-byte port number). By letting the custo- 
dian identifier be 2 bytes, about 10 bytes for every 
entry ate wasted. Then, assuming a network of 50 
nodes, a space of 0.5Kb for the volume location 
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map at every node yields access to 500 • 50 : 25 
Gb. With a course frame of approximately 1Mb 
we can have courses consisting of 25000 frames. 
The total wasted space is 0.5K at each of the 50 
network nodes, thus only 25Kb. 

The redistribution of objects can be performed 
both by object movement, where an object moves 
between volumes, and by volume movement, 
where a volume moves between nodes. We are 
in the process of l:*rforming extensive simulation 
experiments concerning the performance of the 
volume movement algorithm. This algorithm is 
as follows: 

1. keep a flag copy-on-write initialised to 
FALSE 

2. construct a machine independent represen- 
tation of the volume 

3. ship that representation to the remote site 

4. regenerate the multimedia objects at the re- 
mote site 

5. 

. 

if copy-on-write changes to TRUE (writes 
on volume's objects while copy was exe- 
cuted, dirty volume) then repeat from step 
1, retransmitting only the changed objects. 
The interarrival time of the write requests 
to the volume's objects is the critical factor 
in determining volume dirtyness. 

after the second (possible) update, freeze 
the volume. For all the services offered by 
the moved volume inform the portmapper 
for their change. Also, broadcast a message 
in order to update the volume location map 
of each node by recording the new position 
of the moved volume. 

A similar algorithm was used at the migration 
process of fries in the distributed file system de- 
scribed in [13] but little work has been done on 
the important topic of the migration of multime- 
dia objects. 

4.2. Naming 
MDFS adopts a uniform naming scheme for its 

objects. This means that independently of where 

an object resides and what it represents (e.g. 
text, image) it is accessed using the same nam- 
ing scheme. We chose to adopt the UNIX tree- 
structured file system naming scheme since it is 
flexible and widely used. The naming mechanism 
performs the task of mapping a path name that 
uses the MDFS conventions (which are UNIX- 
like) to the appropriate name of the Local Mul- 
timedia File System (LMFS). Under the root of 
the MDFS tree the directories flocaI, which con- 
tains the local namespace, and /shared are po- 
sitioned. The cmly files under the root axe the 
symbolic links to the more frequently used re- 
mote files. Directly under the /shared directory 
the locally stored part of the shared namespace 
(local file system) is mounted. For example, at 
a UNIX workstation named "naxos5" the local 
UNIX filesystem is mounted as indicated in fig- 
ure 3 (point 1), under the / shared  directory there 
exists one stub for each custodian (point 3, same 
figure), while a flag R (point 4, same figure) de- 
notes that machine PC-6 is remote. 

An MS-DOS image object named X-Ray10 re- 
siding at the MS-DOS directory C:/ radiology/ 
xrays at machine PC-6 (point 2, same figure) will 
translate to an MDFS path name /PC-6/C/ra- 
diology/ xrays/X-RaylO.  The MDFS design ap- 
proach consists of using prefix patterns and spec- 
if-ying replacements [3]. A prefix pattern is (me 
that begins from the root (e.g. /PC-6/C/ radi- 
ology/ xrays is a prefix pattern while the above 
pattern as  bpattern in /VC-5/D/PC-6/C/ra- 
Co/ogy/xrays is not and it cannot be replaced). 

As an example of the functionality of the nam- 
ing mechanism consider a course frame named A- 
~ens  with full local pathname on a DOS ma- 
chine (7/ Geography/ dries/Athens. The syn- 
tactic namespace software translates the uniform 
pattern used by MDFS (i.e. /7ocal/ Geography/ 
cities/Athens) to the locally understandable (me 
(i.e. the above DOS pathname). 

4.3. Caching and Buffering 
In order to obtain efficiency an additional 

caching scheme is used at the client's site. This 
caching scheme is particularly adequate for large 
objects like course frames. A course frame is read 
in its entirety in one operation and is cached at 
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the client's site. Since most course f~ames are 
read-only their access is particularly efficient since 
no call-backs are required. The call-back mecha- 
nism [13] provides the server with a way to inform 
the clients of a shared object that some operation 
has changed the object. Thus, the clients are noti- 
fied that the object that they have cached locally 
is not the most current. 

In order to support continuous media as voice 
it is necessary to provide an effective buffering 
scheme. Buffering can be provided at the server's 
site or at the client's or at both. The MDFS de- 
sign uses buffering at the server site in order to 
simplify the development of client applications. 
The server through the read-ahead that performs 
with its buffering subsystem tries to guarantee a 
media stream to the client that satisfies the con- 
tinuity requirements [12]. Optionally, the client 
can use additional buffering in order to further 
smooth the variations. 

5. Conclusions 

We have presented the design and architecure 
of the multimedia subsystem (MDFS) of a dis- 
tributed authoring environment (VAS). We have 
addressed a number of design issues that come up 
in multimedia filing systems (it is not technically 
feasible to address all the important  design issues 
of such systems in a work of this kind), and have 
shown that this design meets many of the perfor- 
mance and functionality requirements that users 
have of such tools. This is a result of both the 
underlying model that VAS supports (based on 
the notion of actors) and the implementation de- 
risions we made along the way. 

By using this model in the MDFS design, we 
have constructed a robust and efficient distribut- 
ed system that may evolve in time with the ad- 
dition of new services. Moreover, CFC model 
supports the dynamic nature of VAS by enabling 
certain tools (i.e. facilitators) to "dynamically" 
change their roles in VAS society. In order to im- 
plement a prototype of MDFS, we have used the 
Berkeley UNIX socket library, creating a system 
that may be distributed over a network as com- 
mon as Internet (non-UNIX nodes that support 
sockets can also access MDFS). Other importan- 

t design desicions include the distribution of the 
file system tree together with the use of a uni- 
form naming scheme for media objects to achieve 
location transparancy, the support of caching and 
buffering at each client site together with the use 
of pipelining in message processing by tools to 
speed up execution and to handle continuous me- 
dia objects, the use of custodians to support dis- 
tributed media storage and media migration, and 
the use of an on-line performance monitor for 
load balancing and redistribution. 

VAS design takes into account the differen- 
t classes of users that may use the system. 
A coarse-grain classification distinguishes three 
such classes: end-users (VAS application users), 
system users (VAS application developers) and 
system administrators. Although in many cases 
these classes may overlap, care has been taken to 
define roles in the process and to represent each 
role with an autonomous tool. In this way, users 
are forced to assume different roles for different 
tasks and thus become part of the system model. 

We are currently finishing with the implemen- 
tation of basic MDFS functions, and we are 
developing a special database server that offer- 
s database services using the same model as in 
MDFS. In the near future we plan to conduc- 
t simulation studies on the performance of the 
system using mathematical models and simula- 
tion tools [7]. These will enable us to relate the 
implementation of MDFS to the network perfor- 
mance (which is critical parameter for system per- 
formance) more tightly, and hopefully to come to 
new conclusions about the "dynamics" of such 
systems. Furthermore, we will concern ourselves 
with issues related to object specification, object 
retrieval and system usability. 
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